Desolvation-limited Reactions of Amines with the 1-(4-Methylthiophenyl)-2,2,2-trifluoroethyl Carbocation

John P. Richard

University *of* Kentucky, Department *of* Chemistry, Lexington, Kentucky, 40506-0055, *U. S.A.*

The rates of capture of the 1-(4-methylthiophenyI)-2,2,2-trifluoroethyl carbocation by alkylamines in a desolvation-limited reaction decrease with increasing amine pK_a, and are up to 200 times slower than diffusion-limited carbocation capture by azide.

Carbocation capture by a nucleophile in a hydroxylic solvent involves at least three steps (Scheme 1). (a) Solvent separated ion or dipole pair formation (k_d) , (b) extrusion of solvent to free an electron pair for reaction with nucleophile (k_h) , (c) bond formation (k_{Nu}) . The barrier to k_{h} may make a significant, but unknown,[†] contribution to the overall reaction barrier. 1-2 The problem is simplified when the chemical barrier is so small that solvent-separated or contact ion pair formation is rate determining. Here the observed rate constants will depend only on the first two steps in Scheme 1 and variations in rate constants for different nucleophiles will reflect differences in k_h , because k_d for solvent-separated ion pair formation should be largely nucleophile independent.

In 20% methanol in water ($\mu = 0.8$ M, NaClO₄. $t = 22 \pm$ 2° C), 4-SMe and 4-OMe-substituted 1-phenyl-2,2,2-trifluoroethyl bromides and tosylates \ddagger react by an S_N 1 mechanism through highly reactive, solvent equilibrated, carbocation

Figure 1. The Brønsted plot of second-order rate constants for **l-(4-methylthiophenyI)-2~2,2-trifluoroethyl** carbocation capture by amines calculated relative to a value of 5×10^9 dm³ mol⁻¹ s⁻¹ for k_{az} . \circlearrowright , primary alkylamines; ethylamine (p K_a 11.0), propylamine (p K_a = 10.9),¹² methoxyethylamine (p K_a 9.2),¹³ ethylene diamine (p K_a 9.7, statistically corrected),¹³ ethylene diamine monocation (p K_a 7.5),¹³ and trifluoroethylamine $(pK_a 5.9);^{12}$ **A**, other primary amines; hydrazine (p K_a = 7.8, statistically corrected),¹³ hydroxylamine (p K_a) **6.0)**,¹³ acetylhydrazine (pK_a 3.2),¹³ and hydrazine monocation (pK_a = −1.1);¹⁴ △, diethylamine (pK_a = 11.0);¹³ ●, ammonia (pK_a = and trifluoroethylamine $(pK_a \t 5.9)^{1/2}$. other primary amines;
hydrazine $(pK_a = 7.8$, statistically corrected),¹³ hydroxylamine $(pK_a$
6.0),¹³ acetylhydrazine $(pK_a \t 3.2)$,¹³ and hydrazine monocation $(pK_a -1.1)$;¹⁴ -1.7).¹⁶ The solid line has been drawn through points for primary alkylamines.

 \dagger Note, however, that it has been shown that azide reacts about 10 times faster than acetate in encounter-limited reactions with the 1-(4-methylphenyl)ethyl carbocation.2

intermediates **(1)** and (2).3 Reactions in the presence of increasing $[N_3-]$, or at a constant $[N_3-]$ and increasing [amine] gave nucleophilic adducts§ which were separated by h.p.1.c. and quantitated spectrophotometrically.^{3,4} Selectivities k_{az} k_{amine} and $k_{\text{az}}/k_{\text{solv}}$ were calculated from product and reactant concentration ratios, using the average of values for at least *5* different amine or azide concentrations, respectively.3.4 The values for $k_{\text{av}}/k_{\text{solv}}$ are 100 and 28 dm³ mol⁻¹ for (1) and (2), respectively. Amine general-base catalysis of solvent addition is weak since an increase from 0 to 0.6 M ethylamine increases the fraction of solvent adducts by only 30%, relative to the azide adduct formed in an uncatalysed reaction.⁵

The azide reactions are diffusion limited; this is observed for azide addition to thermodynamically more stable l-phenylethyl carbocations.⁴ Substitution of $k_{az} = 5 \times 10^9$ dm³ mol⁻¹ s⁻¹ (refs. 4, 6) into $k_{\text{az}}/k_{\text{solv}}$ gives k_{solv} values of 5×10^7 and 1.8 \times 10⁸ s⁻¹, respectively for (1) and (2). The ratio $k_{\text{az}}/k_{\text{amine}}$ (dimensionless) for trifluoroethylamine (TFEA) reaction decreases only slightly from 34 for (1) to 30 for (2); *i.e.*, k_{az} and k_{TFEA} change little relative to one another as k_{solv} increases 4-fold. We conclude that TFEA is like azide, and captures **(1)** and (2) with a carbocation independent rate constant for rate-limiting ion-dipole pair formation. If TFEA reaction is limited by the rate of encounter complex formation, then so is that of the more basic amine ethylamine with $k_{\text{az}}/k_{\text{amine}} = 100$ for reaction of **(1).** Simple diffusion-limited rate constants should not differ by $30-100$ fold. Therefore a step which is slower than diffusion limits the overall rate of amine-carbocation complex formation.

The Brønsted plot in Figure 1 provides convincing evidence that the rate-limiting step is amine desolvation. The k_{amine}

§ The product of the reaction between 4-(thiomethylphenyl)-2,2,2trifluoroethyl bromide and methoxyethylamine was isolated and characterized by **'H** n.m.r. and high resolution mass spectroscopy.

7 The rate constants for diffusion-limited proton transfer between electronegative atoms decrease by only a factor of 2-3 for each unit increase in charge of like sign at the other reactant.l7 **A** statistical correction of k_{az} is inappropriate because the azide reaction is diffusion limited (there is, for instance, no statistical advantage to diffusional azide reaction over that for the spherically symmetrical nucleophile **I-).** Diffusional rate constants are dependent on the magnitude of the angle of attack which gives products,¹⁸ and the diffusional azide reaction may be *ca.* 2-fold faster than for a monodentate nucleophile if non-reactive carbocation-nucleophile pairs separate faster than nucleophile rotation into a reactive configuration. Not enough is known about the behaviour of these complexes to justify a correction of k_{az} relative to k_{amine} .

 \ddagger The bromides and tosylates were prepared from the corresponding phenyltrifluoroethanols using methods described previously.3 **All** new compounds were characterized by 'H n.m.r. spectroscopy, high resolution mass spectroscopy, and elemental analysis.

values, calculated from $k_{\text{az}}/k_{\text{amine}}$ and the above value for k_{az} , decrease with increasing amine basicity ($\beta_{\text{nuc}} = -0.09$ for primary alkylamines). This is inconsistent with a diffusionlimited amine reaction, but may be readily explained by a desolvation-limited $(k_h,$ Scheme 1) reaction, where k_h decreases as the amine-solvent hydrogen bond is strengthened by increasing amine basicity.^{7,8} The low reactivity of urea and hydrazine monocation suggests that there is a change to rate determining k_{Nu} (Scheme 1) for the reaction of weakly basic nucleophiles.

Grunwald has reported that water extrusion from an amine-water-ammonium cation complex is slower than proton transfer between buffer species, through the intervening water molecule.^{9,10} It is shown here that water extrusion from an amine-water-carbocation complex *(kh,* Scheme 1) is markedly slower than diffusional breakdown by k_{-d} , and that carbocation reaction with the sandwiched solvent (amine catalysis of solvent addition) is not much faster than uncatalysed addition. Jencks has reported negative β_{nuc} values for phosphoryl transfer to substituted quinuclidines. 11 These reactions are much slower $(1-10^{-7} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1})$ than the reactions studied here, and are unlikely to be desolvation limited. The observed β_{nuc} was proposed to result from $\beta_{\text{nuc}} =$ -0.20 for a pre-equilibrium desolvation step and a smaller positive β_{nuc} value for the chemical step.

This work was supported by a Summer Research Fellowship from the University of Kentucky and a Bristol Meyers grant administered by the Research Corporation.

Received, 14th April 1987; Corn. 502

References

- 1 C. D. Ritchie, *Acc. Chem. Res.,* 1972 *5,* 348; **A.** Pross, J. *Am. Chem. Soc.,* 1976,98,776.
- 2 J. P. Richard and W. P. Jencks, J. *Am. Chem. SOC.,* 1984, 106, 1371.
- 3 J. P. Richard, J. *Am. Chem. SOC.,* 1986, 108, 6919.
- 4 J. P. Richard, M. E. Rothenberg, and W. P. Jencks, J. *Am. Chem. SOC.,* 1984, 106, 1361.
- 5 J. P. Richard and W. P. Jencks, J. *Am. Chem. SOC.,* 1984, 106, 1396; R. Ta-Shma and W. P. Jencks, *ibid.,* 1986, 108, 8040.
- 6 R. A. McClelland, J. *Am. Chem. SOC.* 1986, 108,2808.
- 7 E. M. Arnett and B. Chawla, J. *Am. Chem. SOC.* 1979,101,7141.
- 8 R. W. Taft, J. F. Wolf, J. L. Beauchamp, G. Scorrano, and E. M. Arnett, J. *Am. Chem. SOC.* 1978, 100, 1240.
- 9 E. Grunwald, *Acc. Chem. Res.,* 1971, 4, 107.
- 10 E. Grunwald and **A. Y.** Ku, J. *Am. Chem. SOC.,* 1968,90,29.
- 11 W. P. Jencks, M. T. Haber, D. Herschlag, and K. L. Nazaretian, J. *Am. Chem. Soc.,* 1986, 108, 479.
- 12 W. P. Jencks and M. Gilchrist, J. *Am. Chem. SOC.,* 1968,96,2622.
- 13 W. P. Jencks and J. Regenstein, in 'Handbook of Biochemistry and Molecular Biology,' 3rd edn., ed. G. D. Fasman, CRC Press, Cleveland, 1976; vol. 1, p. 305.
- 14 P. Glavic and J. Zupan, *J. Inorg. Nuc. Chem.*, 1981, 43, 1565.
- 1s **A.** R. Fersht, J. *Am. Chem. SOC.,* 1971, 93, 3504.
- 16 D. L. Hunston and I. **M.** Klotz, J. *Phys. Chem.,* 1971, 14,2123.
- 17 M. Eigen, *Angew. Chem., Int. Ed. Engl.,* 1964,3, 1.
- 18 P. Debye, *Trans. Electrochem. SOC.,* 1942, **82,** 265.